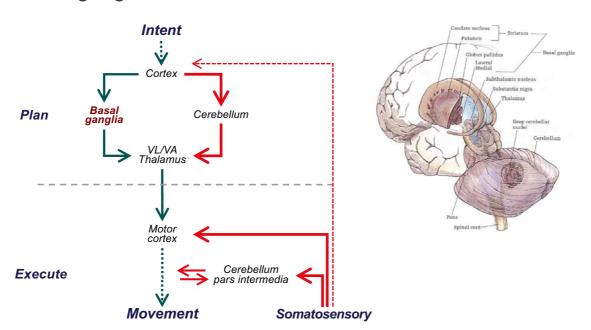
Parkinson's Disease

Basal ganglia: function and pathology

Bernard Schneider October 2024

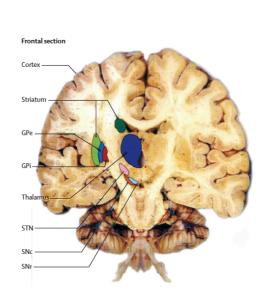
BIO480

EPFL Lecture plan


- 1. Basal ganglia circuitry
- 2. Nigrostriatal degeneration and symptomatic treatments
 - Motor symptoms → dopamine replacement
 - Deep brain stimulation
- 3. Neuronal degeneration / Lewy body pathology
 - Selective vulnerability of neuronal subtypes
 - Spreading of the α-synuclein pathology
- 4. PD etiology: organelle quality control
 - Recessive forms: parkin, PINK1 and mitochondrial turnover

BIO480

1. Basal ganglia circuitry


- 2. Nigrostriatal degeneration and symptomatic treatments
 - Motor symptoms → dopamine replacement
 - Deep brain stimulation
- 3. Neuronal degeneration / Lewy body pathology
 - Selective vulnerability of neuronal subtypes
 - Spreading of the α-synuclein pathology
- 4. PD etiology: organelle quality control
 - Recessive forms: parkin, PINK1 and mitochondrial turnover

EPFL Basal ganglia: movement control

BIO480

EPFL Basal ganglia: structure

striatum caudate

putamen

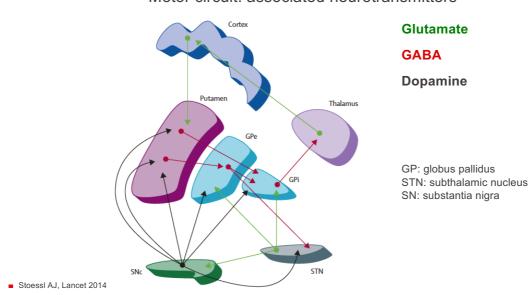
globus pallidus interna

externa

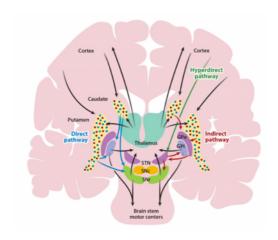
subthalamic nucleus

substantia nigra pars compacta

pars reticulata



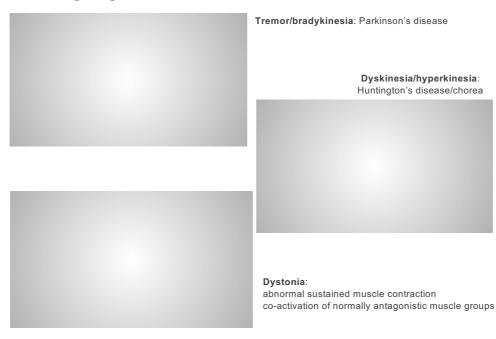
Stoessl AJ, Lancet 2014 Obeso JA, Lancet 2014


EPFL Basal ganglia: circuits / neurotransmitters

Basal ganglia:

Motor circuit: associated neurotransmitters

Basal ganglia: circuit for motor control **EPFL**



Human brain

Rodent brain

- Input nuclei of the Basal Ganglia: striatum
- Output nuclei of the Basal Ganglia: SNr
- Nelson AB & Kreitzer AC, Ann Rev Neurosci 2014

Basal ganglia: movement disorders **EPFL**

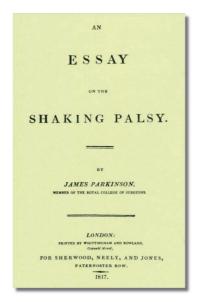
EPFL Lecture plan

- 1. Basal ganglia circuitry
- 2. Nigrostriatal degeneration and symptomatic treatments
 - Motor symptoms → dopamine replacement
 - Deep brain stimulation
- 3. Neuronal degeneration / Lewy body pathology
 - Selective vulnerability of neuronal subtypes
 - Spreading of the α-synuclein pathology
- 4. PD etiology: organelle quality control
 - Recessive forms: parkin, PINK1 and mitochondrial turnover

EPFL Parkinson's disease

Epidemiology

- 1-2% of the population over the age of 65 years (4-5% by the age of 85)
- Average age of onset typically between 58-65 years
- Found world-wide, more common in industrialized countries
- Symptom severity increases over time
- Men ≥ women



EPFL Parkinson's disease

First clinical description

James Parkinson, 1817
"...involuntary tremulous motion, with lessened muscular power, in parts not in action and even when supported; with a propensity to bend the trunk forwards, and to pass from a walking to a running pace, the senses and the intellects uninjured."

- rhythmic tremor at rest
- rigidity
- bradykinesia / akinesia

EPFL Parkinson's disease: symptoms

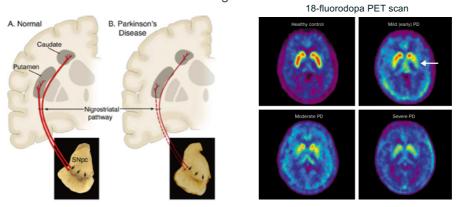
Shuffling

Tremor at rest

Postural instability

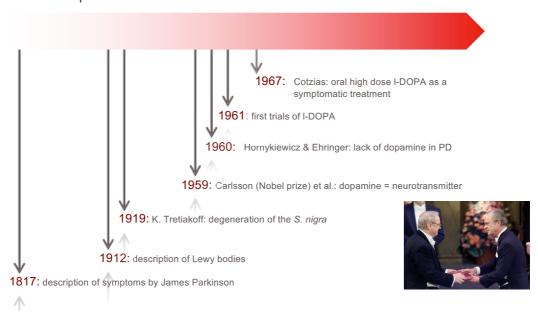
Initiation of movement

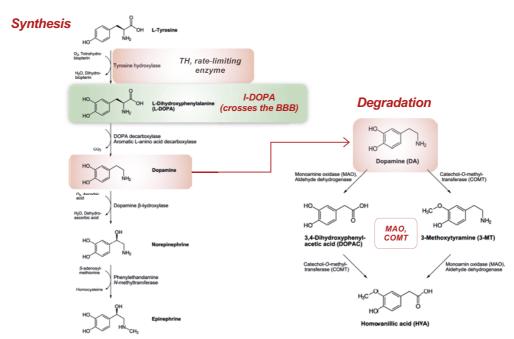
EPFL Parkinsonism: a syndrome


Parkinsonism: a syndrome not clearly delineated

[■] Modified from Arch Neurol 2001; 58:186

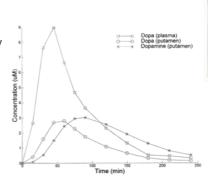
EPFL Parkinson's disease: pathology


Loss of pigmented neurons residing in the *Substantia Nigra pars compacta* and innervating the striatum


- Late 50s: dopamine is present in the mammalian brain, mainly in the striatum
- 1960: Ehringer & Hornykiewicz discover the decrease in striatal dopamine content
- <50% striatal dopamine loss ⇒ no symptoms</p>
- >70% striatal dopamine loss ⇒ Parkinsonian symptoms
- At death, >90% loss of dopamine

EPFL Parkinson's disease: loss of dopamine

Dopamine in Parkinson's disease: a few milestones...


EPFL Dopamine biosynthesis (catecholamines)

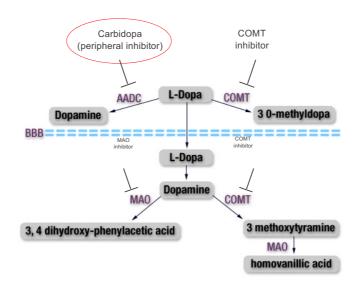
EPFL L-DOPA: a therapeutic precursor for dopamine biosynthesis

L-DOPA (levodopa)

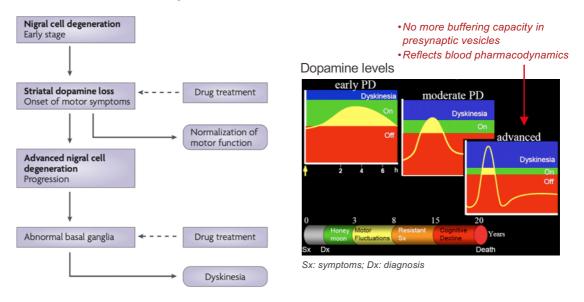
- L-DOPA: first synthesis in 1911 (Casimir Funk)
- L-DOPA has poor pharmacodynamic properties:
 - ·blood half-life of approx. 1hr
 - ·absorbed in the upper small intestine
 - ·metabolized to dopamine in the periphery
 - ·metabolized rapidly in the CNS


•

EPFL Parkinson's disease - Question 1

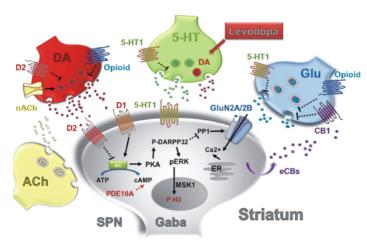

1913: Marcus Guggenheim (Hoffmann-la Roche) isolated the L-DOPA enantiomer from Vicia faba. He ingested the compound and immediately started vomiting as L-DOPA was converted to dopamine, which induces nausea via the medulla oblongata, a CNS region accessible to peripheral dopamine. L-DOPA is now an effective drug for PD, why?

(1 correct answer)


- A. L-DOPA is injected in the brain
- A compound is co-administered to block L-DOPA to dopamine conversion in the periphery
- A modified form of L-DOPA is used that accumulates only in the brain
- The dose of L-DOPA was adapted to prevent this side effect

EPFL L-DOPA

EPFL L-DOPA treatment: dyskinesia as a severe side-effect



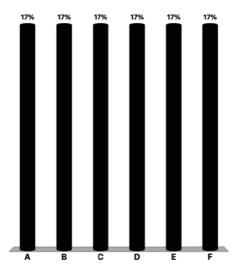
Dyskinesia: involuntary movements as a side effect of I-DOPA Dyskinesia likely due to pulsatile I-DOPA exposure

doi:10.1038/nrn2471

EPFL L-DOPA treatment: dyskinesia as a severe side-effect

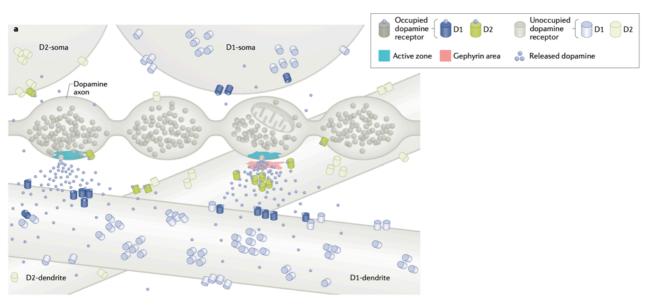
Example of dyskinesia mechanism: faulty dopamine neurotransmission

L-dopa \Rightarrow dopamine (DA) \Rightarrow serotonergic neurons

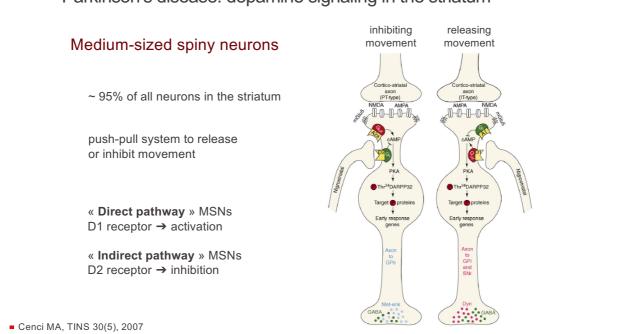

DA is then released non-physiological, unregulated manner in the extrasynaptic cleft \Rightarrow "false transmitter" causing abnormal and pulsatile activation of striatal DA receptors.

https://doi.org/10.1002/ana.25364

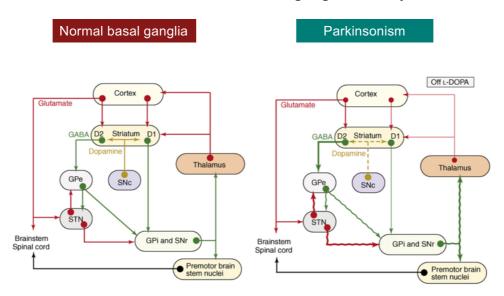
EPFL Parkinson's disease - Question 2


L-DOPA treatment is poorly effective in late-stage PD patients because... (indicate all correct answers)

- A. L-DOPA does not cross the BBB
- B. Dopamine can no more be synthesized from L-DOPA
- There is not enough presynaptic vesicles to store dopamine in the striatum
- D. There is not enough dopamine transporter to recapture dopamine
- E. Striatal neurons have degenerated
- Other symptoms appear that do not respond to L-DOPA


_

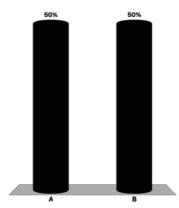
EPFL Parkinson's disease: dopamine signaling in the striatum


https://doi.org/10.1038/ s41583-021-00455-7

Parkinson's disease: dopamine signaling in the striatum

EPFL Parkinson's disease: role of dopamine in the basal ganglia

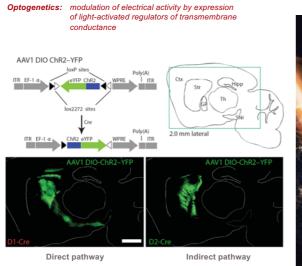
How does PD affect the basal ganglia circuitry?



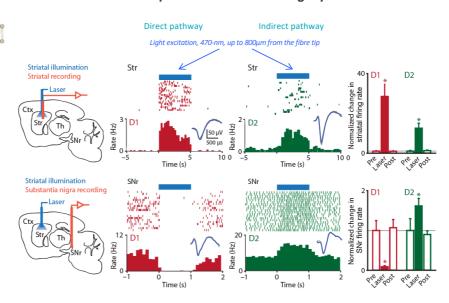
Parkinson's disease - Question 3

In multiple system atrophy (MSA), there is degeneration of dopaminergic neurons in the substantia nigra which is similar to PD. However, the disease also affects multiple brain regions including medium spiny neurons in the striatum.

MSA patients have Parkinsonian symptoms that respond well to levoDOPA treatment:

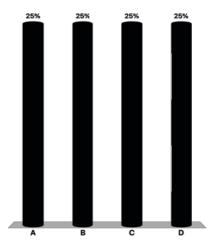

- A. Vrai
- B. Faux

EPFL Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry


Alexxai V. Kravitz¹, Benjamin S. Freeze $^{1.4,5}$, Philip R. L. Parker $^{1.3}$, Kenneth Kay $^{1.5}$, Myo T. Thwin 1 , Karl Deisseroth 6 & Anatol C. Kreitzer $^{1.2,3,4,5}$

EPFL Basal ganglia: role of the striatum in motor control

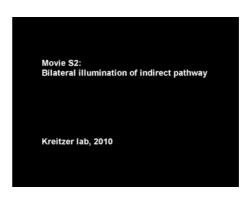
Optogenetic control of D1 and D2 medium spiny neurons has opposite effects on the output in the *substantia nigra pars reticulata*



EPFL Parkinson's disease: question 4

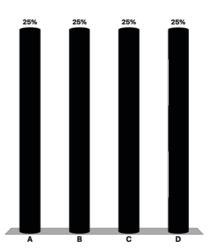
What is the behavioral effect of **light stimulation** in the striatum of D2R-Cre mice injected with AAV-DIO-ChR2?

(1 correct answer)


- A. No change in animal motor behavior
- B. Constant hyperactivity
- C. Transient hyperactivity
- Mouse freezing during exposure to light

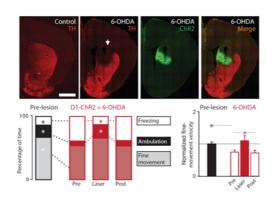
EPFL Basal ganglia: role of the striatum in motor control

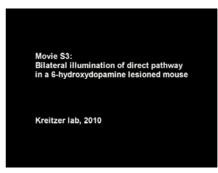
- Activation of D1 striatal neurons increases spontaneous motor activity
- Activation of D2 striatal neurons reduces spontaneous motor activity


Light-activation of the « indirect » D2 pathway leads to mouse freezing

EPFL Parkinson's disease: question 5

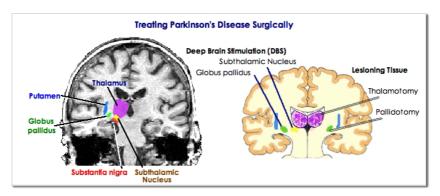
A toxin is injected in the striatum to induce the selective degeneration of nigrostriatal neurons. The experiment is performed in D1R-Cre mice previously injected with AAV-DIO-ChR2.


What is the behavioral effect of light stimulation? (1 correct answer)

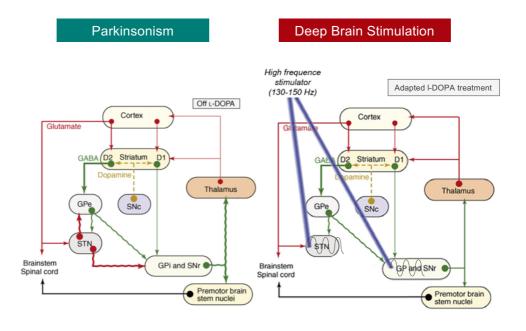

- A. Constant hyperactivity
- Rescue of parkinsonian bradykinesia observed in these mice
- C. No change in motor activity
- D. Development of parkinsonian symptoms

EPFL Basal ganglia: role of the striatum in motor control

 Activation of D1 striatal neurons increases spontaneous motor activity can correct reduced motor activity due to 6-OHDA-induced lesions of the nigrostriatal system

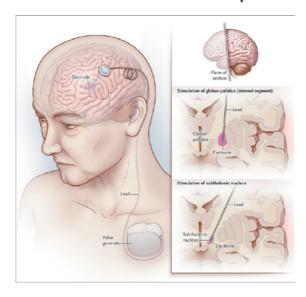


Light-activation of the « direct » D1 pathway restores mouse motor activity


EPFL Basal ganglia: symptomatic treatments

Functional interventions on the circuitry of the basal ganglia

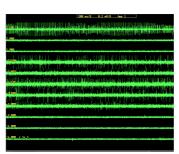
- Surgical ablation: pallidotomy, thalamotomy (for tremor only)
- Functional interference: Deep brain electrical stimulation (DBS)
- Subthalamic or striatal gene therapy: glutamic acid decarboxylase / AADC / combined enzymes for dopamine synthesis



EPFL Basal ganglia: deep brain stimulation

EPFL Basal ganglia: symptomatic treatments

Deep Brain Stimulation


- Developed by Alim-Louis Benabid in 1980s (Grenoble)
- Discovery of DBS efficacy was made when performing thalamotomy using thermocouple electrodes
- Various stimulation frequencies were tested with the electrode to verify placement
- High frequencies (>100 Hz) were found to alleviate tremor

Okun MS et al., N Engl J Med 367;16 2012

EPFL Basal ganglia: deep brain stimulation Stereotaxic implantation of the electrodes

- Adjustable, reversible
- High frequency, pulsatile electrical stimulation
- Placement: by MRI or CT physiologically by coordinated firing and tremor monitoring


EPFL Basal ganglia: deep brain stimulation

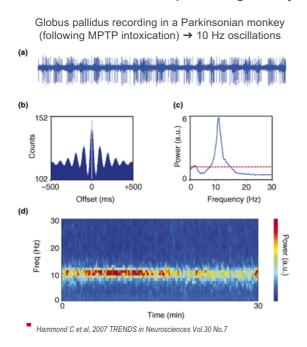
Deep Brain Stimulation: clinical benefits

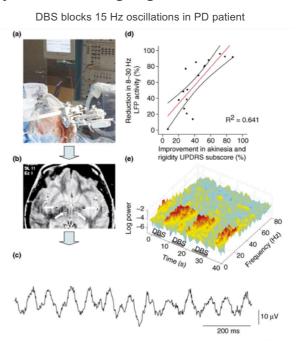
- Improvement in "OFF" state, some improvement in "ON" state
- Reduction in I-DOPA
- With disease progression, worsening of motor function is not prevented
- No demonstration of a disease-modifying effect
- FDA approval:

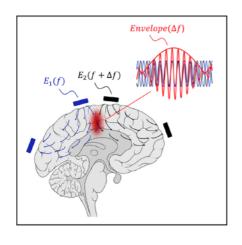
for essential tremor in 1997 for Parkinson's disease in 2002 for dystonia in 2003

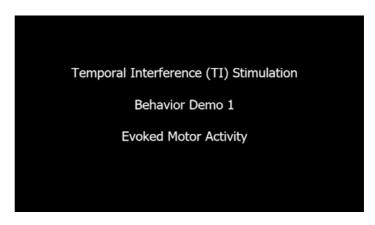
>100,000 patients treated worldwide

EPFL Basal ganglia: deep brain stimulation Deep Brain Stimulation (DBS)








EPFL DBS relieves pathological synchrony in the basal ganglia

Non-invasive deep brain stimulation: temporal interference stimulation

Cell
Noninvasive Deep Brain Stimulation via Temporally
Interfering Electric Fields

Authors Nir Grossman, David Bono, Nina Dedic, ... Li-Huei Tsai, Alvaro Pascual-Leone, Edward S. Boyden